Calibration of an urban cellular automata model by using statistic techniques and a genetic algorithm.

Application to a small urban settlement of NW Spain

Andrés M. García, Inés Santé, Rafael Crecente.

Structure of the presentation

INTRODUCTION

- •BACKGROUND
- •STUDY AREA
- FLEXIBLE CA BASED LAND-USE CHANGE MODELS.
- •OBJECTIVES

DESIGN OF THE MODEL

- **•**TRANSITION RULE
- •CALCULATION OF SUITABILITY AND NEIGHBORHOOD
- •CALIBRATION

RESULTS

- •STUDY AREA
- •COMPARISON OF SIMULATED AND REAL MAPS USING SPATIAL
- METRICS.
- VISUAL COMPARISON

CONCLUSIONS

Background.

- Orthodox CA are not able to capture all the complexity of land-use change processes. Therefore, relaxations to the formal rule have to be made.
- •If too many relaxations are made models may result too complex, lack flexibility or lose the essence of formal CA rules.
- Most Urban CA were tested in large urban areas where information is abundant.
- •Urban dynamics of small urban areas with slow and low growth are more difficult to simulate.

Study area.

Study area.

Flexible CA based Land-use change models.

Model of White:

presents and extended circular neighbourhood where the influence of several land uses is taken into account.

- •Advantages:
 - •Keeps the essence of orthodox CA.
 - Allows to simulate the influence of several land uses.
 Allows to simulate the dynamics of several land uses.
 The two previous advantages give this model a lot of flexibility.
- •Shortcomings:
 - •Has a lot of coefficients which makes it difficult to calibrate.

Objectives

- Modify the model of White to reduce its number of parameters and make it more easy to calibrate.
- •Calibrate the model with an Genetic Algorithm.
- •Increase **flexibility** and **accuracy** of the model.
- •Test it simulating urban growth in a small village.

Transition rule of the model of White

			6			
	5	4	3	4	5	
	4	2	1	2	4	
6	3	1	0	1	3	6
	4	2	1	2	4	
	5	4	3	4	5	
			6			

 $v = 1 + (-\ln(rand))^{\alpha}$

$$N_{j} = \sum_{k,i,d} m_{kd} I_{id}$$

- Fixed land-uses (forest & agriculture).
- Active land-uses (commercial, industrial and residential).

$$P_{hj} = R_j \times v \times s_j^{\beta} \times \left(1 + N_j\right)_j$$

$$v = \exp(-\alpha(1 - rand)) \qquad N_j = \sum_{k,i,d} m_{kd} I_{id}$$

Calculation of suitability.

The suitability was calculated using a **logistic regression:**

1. Identify the most significant variables for each land-use Pr>|z|.

2. Calculate de suitability for each land-use with the most significant variables.

$$P(y=1 \mid X) = \frac{\exp(\sum BX)}{1 + \exp(\sum BX)}$$

 $Ln(P/(1-P)) = b_0 + b_1 * x_1 + b_2 * x_2 + \dots + b_k * x_k + error$

Calculation of suitability (variables).

Variables	Commercial		Industrial		Residential	
	Pr(> z)		Pr(> z)		Pr(> z)	
Area of parcels	0.05		0.009	X	2.78E-12	X
Distance to water bodies.	0.0002	Х	2.32E-09	X	7.27E-13	X
Distance to Ribadeo down town	0.7		0.04		7.21E-23	X
Distancia to municipal roads	0.02		0.1		1.26E-11	X
Distance to main roads	2.14E-07	X	3.19E-11	X	2.18E-18	X
Distance to secondary roads	0.4		1.33E-06	X	5.01E-18	X
Distance to railway tracks	0.04		0.0004	X	0.4	
Shape index of parcels	0.09		0.0009	X	8.65E-11	X
Slopes	0.7		0.7		1.28E-05	X

INTRODUCTION MODEL DES. RESULTS (

Calculation of suitability (results).

CONCLUSIONS

Calculation of the neighbourhood.

To calculate the coefficients of the neighbourhood, lines which represent the distance decay effect were used.

Calibration

- Calibration using a Genetic Algorithm.
 - Creation of the initial population(700 individuals)
 - Evaluation of the population (Pontius index (2002), NP, AREA_MN, FRAC_AM)
 - Parents selection (Tournament).
 - Cross breeding(recombination with 2 cut point) and creation of next population.
 - Application of the mutation tax (0.008%) to the next generation.
 - The best parent survives.

INTRODUCTION

Calibration (fitness function)

Index of Pontius.

• Fitness function.

Comparison of simulated and real maps using spatial metrics.

	USO	NP	LPI	AREA_MN	FRAC_AM	ENN_AM
Sim. 2007	Industrial	56	0.11	0.63	1.1	148.23
Real 2007	Industrial	45	0.10	0.77	1.06	276.24
Sim. 2007	Residential	272	0.44	0.65	1.13	89.53
Real 2007	Residential	224	0.98	0.78	1.16	88.79
Sim. 2007	Commercial	61	0.01	0.16	1.02	106.89
Real 2007	Commercial	13	0.06	0.73	1.05	252.12

Visual comparison

Index of Pontius: 0.961

Conclusions

- Model has simulated accurately urban growth in the study area.
- Model simplifications kept its power of analysis and allowed using an automatic calibration method.
- **Genetic algorithms** are a good calibration method.
- Future research should focus on **validation** methods.

Obrigado pela sua atenção Thank you for your attention